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Dynamical phase diagrams of neural networks with asymmetric couplings

M. N. Tamashird; O. Kinouchi] and S. R. Salinds
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We consider the synchronous updating of a fully connected Ising neural network with separable but asym-
metric couplings. In the thermodynamic limit, and away from saturation, it is possible to write a nonlinear
mapping for the time evolution of the macroscopic order parameters. A detailed analysis of this mapping is
performed for a simple case, wifi~=2 stored patterns. The dynamical phase diagram, in terms of the degree
of noise and the parameters of the embedding matrix, displays a rich structure of locked regions into different
cycles, in association with nonstandard Farey trees. In some regions of the dynamical phase diagram, we show
the coexistence of two different Farey sequences, giving rise to the overlapping of several locked regions.
[S1063-651X97)03504-9
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[. INTRODUCTION matrix. The mathematical analogy to the thermodynamic
problem of an Ising model with competing ferromagnetic
The dynamical properties of fully connected Ising neuraland antiferromagnetic interactions between first and second
networks, with separable but asymmetric couplings, havéeighbors along an axial directi¢oalled the ANNNI model
been investigated in a set of papers by Coolen and cd5)) is particularly striking. In the ANNNI model the locked
workers[1—4]. The states of the neurons are represented bphases are associated with the spatial modulations of the
Ising spin variables that evolve in time according to a sto-equilibrium magnetization per site along a certain direction.
chastic(Glaubey local-field alignment. The separability of In the neural network models, there is a periodic stationary
the interaction matrix leads to a convenient description irPscillation in time of the dynamical order parameter. Some
terms of macroscopic variables. Although there is no detaile@nalogs of the ANNNI model on a Cayley trgg| can also
balance, we can establish a set(déterministi¢ equations be formulated as a nonlinear dissipative mapping that leads
for the time evolution of the macroscopic order parametersto an equally rich and complex phase diagram.

The attractors of these equations correspond to the stationary It should be pointed out that asymmetric connection ma-
solutions of the problem. trices are always closer to biological realism. Also, simple

In this paper, we look at the simplest, and nontrivial, fixed points should not be the rule among the possible attrac-

cases that have not been fully analyzed by previous author&rs of a biologically more realistic dynamical model. Some
We consider the synchrono(sr paralle) updating of a net-  important phenomena, as the retrieval of temporal sequences
work with just p=2 stored patterns, and a generadd2em-  and synchronization, can be related to the presence of asym-
bedding matrix, which leads to a two-dimensional nonlinearfmetric interactions. In the recent literature there are several
mapping for the macroscopic order parameters. It is the®roposals to use the cyclic attractors of networks with asym-
feasible to perform detailed calculations to characterize th&etric interactions to perform a number of computational
global dynamical phase diagram of this toy motelterms ~ tasks[7]. Very simple networks, with just a few neurons,
of the temperature, which is associated with the level ohave actually been constructed and tested in the laboratory
noise of the system, and the strengths of the symmetric and]. We hope to provide some illustrations of the general
nonsymmetric components of the embedding matrixt  behavior of these models.

h|gh temperatures, there is on|y a trivtﬂaramagnetmdis_ This paper is organized as follows. In Sec. Il we define
ordered stable fixed point. At lower levels of noise, there is ¢he model and write the equations for the time evolution of
rich structure of locked region@rnold tongueinto differ- ~ the macroscopic order parameters. Sections Ill and IV are
ent cycles, depending on the parameters of the embeddirfifdicated to the detailed analysis of special cases of the
matrix. We show that Farey numbers can be used to accoufitodel. Some conclusions are presented in Sec. V.

for the appearance of these oscillating structures. Although

there are also aperiodic limit cycles associated with a van- Il. DEFINITION OF THE MODEL

ishing Lyapunov exponent, we have not been able to find .
g -yap P We consider a fully connected network Mfformal neu-

chaotic attractors. h b d by Isi ) . 1
The complex structure of the dynamical phase diagram&nS that can be represented by Ising spin varial$ies;-1,

of these models comes from the competition between sym©f 1 =1....N. As usual,§=+1 indicates that neuron is

metric and nonsymmetric contributions to the embedding'"iNg action potentials at highest rate, ae-—1 indicatesa
state of rest. The spins are connected by a synaptic matrix

{Jij} defined by the separable bilinear Hebbian form,

*Electronic address: mtamashiro@if.usp.br 1P
Electronic address: osame@gibbs.if.usp.br J.=— BN gV (1)
*Electronic address: ssalinas@if.usp.br YN M,y2=1 S AwE

1063-651X/97/58)/734410)/$10.00 55 7344 © 1997 The American Physical Society



55 DYNAMICAL PHASE DIAGRAMS OF NEURAL NETWORKS.. .. 7345

for i#j, andJ;; =0, whereéf, which represents the activity 1

A~ A
of neuroni in the stored patterru, for u=1,..p, is a ap=— Tr(oyA)zé(Alz—Aﬂ):,.lz—,vn, (8
guenched random variable associated with the probability 2i At Az
distribution
Rur A
P(&)=3(1+r,)8(&'~D+3(1-1,)8&+1). () ap=1 Tr(o,A)=(Ay-Am)= ot 22 (9)
AnrtAz

The parameter,, such that-1<r ,<+1, represents the av-
erage activity per neuron in the stored pattewn For
A,,=9d,, and unbiased patterr(s,,=0, Vu), we regain the
Little-Hopfield model[9—-11], whose equilibrium properties
were investigated in the seminal work of Amit and collabo-

rators[12] (including the case near saturation, for aN, It should be noted that the diagonal Hebbian term,
with finite « [13]). Q

Although there are some investigations of this class o =0y QIVES Origin to olrdinary pzoint attractors associated
g g ith the four patterns=& and *=£&°, corresponding to the

models with more general forms of the embedding matrixais stateg17], whereas the remaining terms yield transi-
[1-3,14, there is still room for further analysis. The simplest jons hetween these patterns. The competition between these
situation, which has not been fully investigated, refers to an.ngjicting effects leads to a rich dynamical phase diagram in
attractor neural network with jugh=2 stored patterns. In o ms of the temperaturd and the coupling parameters
thi_s case, the more generak2 embedding matrix can be (as,an,ap).
written in the form As pointed out in the Introduction, due to the lack of
detailed balance, we cannot use the techniques of equilib-
- _ 3) rium statistical mechanics to analyze models with asymmet-
as—ap l-ap ric interactions. However, it is still possible to present a dy-
namical description of the macroscopic behavior. For

The diagonal cased,,=4¢,,, that is,as=a,=ap=0, for  gynchronous updating, we can write the Markov master
sequential(asynchronouysdynamics corresponds to a spin- equation

glass model proposed by van Hemmkgtb]. Coolen and

Sherringtor{ 2] have already analyzed the particular case of a

symmetric matrixa,=ap=0, and Laughton and Cool¢8] pri1(S)= W(S' —9)pn(S), (10)
have considered the antisymmetric casgs ap =0, for par- S

allel (synchronous dynamics. In the present paper, we

complement these previous Stu‘?“es and e>_<p|ore some fe_?vherepn(S) is the probability of finding the network in the
tures that cannot be observed without considering a generificroscopic stat&=(S, ,...,Sy) at discrete time step, and

asymmetry. o the transition probability is given by a product of Glauber
To check that Eq(3) is in fact the more general>2 terms[16]

matrix, let us write

where gy, 0y, and o, are the usual spig-Pauli matrices.
This parametrization in terms of these four independent ele-
ments, {[,as,a,,ap), is particularly suitable to exploit the
symmetries of the model for unbiased pattefins=0, V).

_[1+ap agtaa

N

1 1 All AlZ N — 1 ‘N /
TA:?(AH Azz)' @) w(S' —9) J_]:[1 Hi+taniShi(S)/Tl}, (11

~ (An A
A— ( An ~12)
Az Az

The “pseudotemperature™ measures the stochasticity of \,nqer the stochastic field
the system. It is related to tH&aussianfluctuations of the
local fields[9,16], which may come from the random emis-

N
sion of neurotransmitters and the delays on the synapses. We _
may choose hj(S)—kZ«l JjkSk- (12

STrA=3(AutAp) =1, 5 : . .
The dynamic macroscopic order parameters are given by

that is the thermal averages of the overlaps between the micro-
' scopic states of the network and the stored patterns,

1 -~~~
f:%TrA:%(All"‘Azz)- (6) 1 N
mu(n=2 pu(S) § 2 €', (13)
We then see that the embedding matrix can be described in
terms of the symmetrica(s), antisymmetric &,), and antidi- _
agonal @p) coupling parameters, for u=1,...p. If m,=1, the uth stored pattern is perfectly
retrieved; ifm,=0, there is no correlation between the net-
At A work state and theth stored pattern. The antipatterrg” is
as=3 Tr(o,A)=3(AptAy) = A (7)  perfectly retrieved whem,=—1. From the master equation,

AurtAz it is easy to show that
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20 TABLE I. Different regions in the ground state &=0+ for
6 N C G, ap=0.
ro i H1B LI A111 %2 + —
ool & sy M A = and (02
A //' H + _
_ol w0 R N B = and (0/12)
A B - +
Gs Isy/ p 4 G, . 4 _ _
_2'(13.0 -2.0-1.0 00 10 20 3.0 C = and (214
a, + - + —
I + -
FIG. 1. Ground state at temperatufe=0+ for ap=0 (the at- o + 4+ and  _ _ @9
tractors and the associated Farey numbers are given in Tiable | TR _ _
E = (2/4)
+ - - +
N
2 o+ o+ - -
mu(n+D=m,(m-3 2, &2 Spa(S) Py . - 8
- 0 + 0
G = , , _ _ (s
X > W(S—S)dy_s. (14)
S'#S v G, - + 0 - 0 (1/4)
For a fully connected network with=2, as in the toy model or- B
under consideration, the mean-field approximation becomeg, - ot - (1/4)
exact. In the thermodynamic limit\—o, we can then use + 0 - 0
the properties of self-averaging with respect to the micro- S S - 14
scopic realizations of the stored patterns to reduce the dy=4 =~ - o + 0 (4
namic process to a one-site problem. The temporal evolution - 0 + T 0 _
of the dynamical order parameters is finally written as a set; = v o+ 4 _ B )
of difference equations,
+ 0 - - 0 4
p Hy = (1/6)
1 + + o+ - - -
my(n+1>=<§r tanr{f };ﬂ ELA,,m,(n) > N
¢ 5 7+ 0o - - 0 . e
where the angular brackets denote an average with respect to + o+ o+ - - -
the probability distributior(2) of the stored patterns. He = _ o 4+ 4 0 _ (e
For the toy modelp=2), Eq. (15) can be written in the L 4 _ _
explicit form [ = d 2/4
p 1 ~ 0 an n 0 (219
my(n+1)| 1+ryrp (1 1 + o+ — _
(mz(n+1) =% |1 tan T [(1+ag—aptap) L, = + 0 and 0 (214
+ 0 - 0
I; = and (2/4)
Xmq(n)+(1l+agtapn—ap)my(n)] + o+ - -
- 0 + 0
| = d 2/4
1-ryrp (1 ; 1 1 N + o+ - e
+ nh =[(1—-ag+
5 | —1/tanh F[(1-asta, P L T I
! 0o - - 0 + +
+aD)ml(n)—(1—a3—aA—aD)m2(n)]}, 3, = + + 0 - - 0 )
o + + 0 - -
o+ + 0 - -
1o b=y 0o - — 0 (1/6)
Although starting from more realistic learning rules, it is
remarkable that Peretfd8] has obtained an analogous setof;, —- 9 — — 0 + + (1/6)
(differentia) equations for the asynchronous updating of un- + + 0 - 0
biased patterns. K. = Tt F 0 - - - 0 18
Introducing the variables 7 + o0 - _ _ 0 + o+ (1/8)
+ + o+ 0 - - - 0
K, = 1
Xn=1 7 [ma(n)+ my(m)], anp = T - o + + 4+ o - - U9
+rqr, N N
and L, = 0 and 0 (0/2)
0 0
L = and 0/2
Yo=7—= [My(n) ~my(n)], ay 2 T 4 -
12
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FIG. 2. Dynamical phase diagrams fay =0,
T>0, and some typical values of the parameters
ag anda, . Only the widest mode-locked regions
are displayed. The various attractors are labeled

by the corresponding Farey numbers.

we can also write
1
Xp+1=tan ?[(1+r1r2)(1+a3)xn

+(1_r1r2)(aD_aA)yn]]y

1
yn+1=tam—{ T [(1+ryrp)(aptaa)X,

wherex,= (Xy,Yn)-

To analyze the linear stability of the attractors of the map-
ping, we define the Lyapunov exponenls,}, which mea-
sure the mean exponential rate of convergence or divergence
of trajectories surrounding the attractor,

o
A= lim MIn|Aﬂ| (=12, (21

M — o

where{A } are the eigenvalues of the product matrix
+(1-rirp)(1-ag)ynly, (19
J(Xp)I(Xp—1) - I(X2)I(Xq), (22
which can be symbolically represented as () 0% -2 (%2 !
Xn+1=F(Xp), (200  formed by the product of the Jacobian matrices
|
IXpt1  IXpta
s MeaYnsn) [ By | L (Hnro)(14ag(loxiy)  (1-ara)(ap—an) (1)
" I(Xn,Yn) Yn+1 IYn+1 Tl(A+rir)(aptan)(1-ya,)  (I-rirp)(l-ag(l-ya,y) )’
aXn (9yn
(23)
|
computed along the attractor. fined by {x*,—x} ,...,(—1)k+1x’k‘ v---:XBPX’f X5
As the hyperbolic tangent is an odd function of its argu-(_ 1 yky* =X}, where ke{l..Q} (i) if

ment, the analysis of the mapping for>0 can be easily

extended tol <0. The attractors of these two cases are re

lated by the following transformationgi) if x* is a stable
fixed point of the mapping fol >0, we have a stable two-
cycle given by {xX*,—x*} for T<O0; (i) if
{XI X3 ,X5-1,X5} is a periodic cycle of perio® (odd) for
T>0, we have a periodic cycle of period@for T<O0, de-

{XI X3 ,...X5_1,X}) is a periodic cycle of perio® (even

for T>0, we have a periodic cycle of perig@d for T<O0,

defined by {x},—x5 .. (~1)* x5 ...,.—x§}, where
ke{l,...Q}.

We remark that Eq(19) corresponds to a subspace of the
more general class of mappings,



7348 M. N. TAMASHIRO, O. KINOUCHI, AND S. R. SALINAS 55

3.0

36—, 0.2

o1 vz ] w2
0.1

4/20

0.0

-1.0 }/4 8
Iy / 14

1 120 \ 320
-3.0 1/16 220 s

112 212

0.8 1.0 1.2

a,

FIG. 3. Dynamical phase diagram fag=ap=0 andT>0. The
more important tongues are labeled by the corresponding Farey
numbers. The Farey numbers of fhe0 dynamica| phase diagram FIG. 6. Devil's Stail’caSQw/Zﬂ' VersusaA) associated with the
are obtained by the generating numbers 2/4 and 1/4. winding numbers of the Arnold tongues and the corresponding larg-

est Lyapunov exponeltk, versusa,) for ag=ap=0 andT=0.15.
The devil's staircase fof =—0.15 is obtained by reflection around

wl2m=1/4.
Xn+1=9(WyXp+ WY+ Ox),
Y 1= g(WorXp+WaoYp+ by), (24)
with
T
g(h)=cy+c, tani yh), (25
which describe two coupled sigmoidal neurons with self-

couplings(w;; and w,,) and threshold term(;% and 6y).

The casec;=c,=y=3, that is, g(h)=(1+e ™, has
FIG. 4. Dynamical phase diagram fag=3, ap=0, andT>0. been considered by Pasemann and Ndi#8. In this particu-

In the darker shaded regions there is a costability of periodic attradar case, with a suitable change of variabless2X,,—1, and

tors with the same winding numbers, but different structyse ~ With the redefinitions

the magnifications in Fig.)5

1 1
T (1+ag)=37wWi1,

1
T (ap—aa) = 7Wiz,

0.80
;075 bl g pors 1
P R e o
070 [l v5 25 2 s . i = Hy=3(0x+ 3wyt 3wy,
ey |2 = x"& T
0.65
-0.10 -0.05 0.00 005 0.1¢
0.34 0.2
T 0.32
0.30 = e 0.1
2/14
-0.15 -0.05 0.05 0.15 Z/I\(.? e
0.0
0.35
: -1.0
T 030 Ay
3/16 —20
0.25

0.22 025 028 031 034
a

s aS

FIG. 5. Magnifications of some costability regions of the dy- FIG. 7. Devil's staircaséw/27 versusag) associated with the
namical phase diagram far,=3, ap=0, andT>0. The attractors winding numbers of the Arnold tongues and the corresponding larg-
are labeled by the corresponding Farey numbers. In the darkerst Lyapunov exponenf\; versusag) for aA:% ap=0, and
shaded regions there is a costability of periodic attractors with th&=0.31. The devil's staircase far=—0.31 is obtained by reflec-
same winding numbers, but different structures. tion aroundw/27=1/4.
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0.0 0.0
A2 A -r2
-24 ] -24
076 080 084 088 092 103 106 109 112 LIS
0.0 0.0
}\q -0.6 }"1 -0.5
-1.2 -10
0.755 0.770 0.785 0.800 0.815 0.830 1024 1.028 1032 1.036 1.040
0.0 0.0
Ao o4 Ao o4
0754 0762 0770 0778 0.786 1.067 1.069 1.071 1.073 1.075
ag s
3
FIG. 8. Largest Lyapunov expone(it; versusag) for ay=53, FIG. 9. Largest Lyapunov exponefit; versusag) for ay=3,

ap=0, andT=0.31. These graphs represent several magnificationa, =0, andT=0.31. These graphs represent several magnifications
of the lower portion of Fig. 7 to allow a better view of the presumed of the lower portion of Fig. 7 to allow a better view of the presumed
fractal structure. The magnified regions are bounded by rectanglegractal structure. The magnified regions are bounded by rectangles.

L 1 ag=tw and
T S 4VV22, .
(X,y)—(xX,—y) if ap——ap. (27)

N The dynamical phase diagrams will be symmetric in the
T (ap+an)=zWa, agXa, subspace of parameters. Furthermore, due to the ad-
ditional symmetry by temperature inversioh——T, it is
sufficient to obtain the phase diagram in the first octant of the
Hy= 2(Oy+ 3wt 2wy, three-dimensional parameter spack,as,a,).
In Fig. 1, we show the ground statat T—0+). The

) ) ] ) indexed letters in this phase diagram refer to attractors rep-
the mapping24) can be written as in Eq19) for unbiased resented in the form

patterns with the inclusion of the additional thresholdig
and H,. For this model, Stollenwerk and Pasemd20] XI"'XB
have detected the existence of strange attractors in a region * gk |
. : Y1'Yo
of the dynamical phase diagram near the paramelets

1
?

—£ a;=1,a,=%, ap=0, H,=3, andH,=0. The different regions, together with the respective Farey
numbers, are explicitly given in Table I. To make contact

. ANALYSIS OF THE MAPPING FOR ap=0 with the analysis of Coolen and Sherringtd]j, we identify

AND UNBIASED PATTERNS the simplest states: (i) A andB are Mattis regiongpatterns

1 and 2, respectively(ii) L, andL, are points of spurious or

In the absence of antidiagonal couplin@s =0) and for  mixture statesiii) regionsC and D are associated with
unbiased patterns {=r,=0), besides the trivial symmetry cyclic structures. In regiomB (which we call Hopfield re-
by inversion, &,y)—(—Xx,—y), the mapping is also invari- gion), there is a costability of state% andB. Mixed states

ant by inversion of the coupling parametexrs anda, t0-  occur fora,=0 only (due to the uncoupling of the mapping

gether with the coordinate transformations in this particular case
_ The usual methods of the theory of bifurcatid@4] can
(X,y)—(y,—x) if as——ag (26)  be used to obtain the dynamical phase diagrams for nonvan-

TABLE II. Farey hierarchy for smaller values af.

Hlo

_ 1
n _0 g 4
n=1 — %

_ 1 2
n=2 — 12 i)

_ 1 2 3 3
n=3 — 16 20 20 16

=4 1 2 3 3 4 S5 S5 4
n= - 20 28 32 28 28 2 28 20
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TABLE lll. Farey hierarchy for larger values @fs.

— 0 1
n —0 — 2 4
n=1 — é

_ 1 2
n=z - 1 8 2 3 10 3
n=3 — 10 4 16 14

=4 1 2 3 3 4 S5 S5 4
n= - 2 18 22 20 22 26 24 18

ishing temperatures. At the trivigharamagneticdisordered gram. As in the case of the analogs of the ANNNI model on
fixed point,x* =(x*,y*)=(0,0), the eigenvalues of the Jaco- a Cayley tree, the devil's staircases are expected to display a

bian matrix can be written in closed form, fractal nature. It is peculiar to see that the Lyapunov expo-
11 nents themselves seem to exhibit this same kind of fractal
4T 2 a2 behavior. In Figs. 8 and 9 we illustrate the presumed fractal

et as™aa (28) character of the largest Lyapunov exponent.

The winding number associated with an Arnold tongue
We should consider two cases. can be written as a rational27=P/Q, whereP andQ are
(i) For [ag|>|a|, these eigenvalues are real. The systenelative prime integerQ is the period of the cycle and is
may undergo either a supercritical pitchfork bifurcatiéor  the number of minima within that periods represents an
T>0) or a period-doublindor flip) bifurcation(for T<0) at  “average” angular frequendy The structure of the Arnold

the critical temperature tongues in the dynamical phase diagram is described by a
Farey hierarchy[22]. In a standard Farey hierarchy, the
— 2 2
| Te|=1+ vas—aj. (29 Farey number coincides with the winding number. Given the

two widest Arnold tongues labeled by the Farey numbers
P,/Q; andP,/Q,, the next Farey numbdwhich labels the
next widest Arnold tongue is obtained by the composition
Ejle

The continuous transitions are between the disord@yarh-
magneti¢ state and either the Matti$erromagnetig states,
for T>0, or a cyclic(antiferromagneticstate, forT<0. The
disordered state is characterized by the Farey number 0/
whereas the ordered states are associated with the Farey P P,+P,
numbers 0/2, fo >0, or 1/2, forT<O0, respectively. —= .
(i) For |ag/<|aa|, the eigenvalues are complex conju- Q QutQe

gates. The system undergoes a Hopf supercritical bifurcatiofihis procedure creates a hierarchical tree, whose elements

(33

at the critical temperature are obtained from the ratio between the sums of the numera-
tors and the denominators of the preceding Farey numbers.

_ 2_ .2
[Tl =V1+as—as, (30 The horizontal ordering of the Farey numbers gives the rela-

associated with a continuous transition between the disoflV€ Position of the Arnold fongues in the_dynamlcal phase
dered state and a periodic cycle with a critical winding num_dlagram, whereas the vertical ordering, hierarchically struc-

. tured, yields a qualitative indication of the region occupied
ber O<w.=7/2, for T.>0; n/2<w.<m, for T.<0) that ) ; o
g (O=w =z e ME=O=T <0 by the various Arnold tongues. Arnold tongues identified by
satisfies the relations . . o
Farey numbers at the top are wider than tongues identified by

1 numbers at the bottom of the hierarchy.
COe=7~ (31) In standard Farey hierarchies, the generating fractions
¢ P,/Q; andP,/Q, produce Farey numbers such tiRandQ
and are always relative primgshat is, the winding and the Farey
numbers coincide In nonstandardFarey hierarchie$23],
tanw.=[a3—a3]"2 (320 however,P andQ may have some common fact@smx P

) - and mX Q). In this nonstandard case, the Farey numbers,
From Eqs(29) and(30), we obtain the stability borders of

the trivial disordered state. The stability borders of the peri- 30

odic cycles and of the attractive fixed points, corresponding

to the Mattis states, are determined from the largest associ-

ated Lyapunov exponentsee the phase diagrams in Figs.

2-5; note that we are indicating the main periodic regions s iy (

only). 16 P
The two-dimensional nonlinear mapping given by Eq. :

(200 presents synchronizatioliphase-locking associated

with Arnold tongues. There are finite regions of the dynami- 0.0

cal phase diagram where the period of a given cycle remains

locked, giving rise to a devil's staircase structure in terms of F|G. 10. Dynamical phase diagram fa=0.1, ap=0, and

the winding number. Figures 6 and 7 display this devil'sT>0. Notice the complex coexistence of two distinct Farey struc-

staircase structur@vith the associated largest Lyapunov ex- tures, giving rise to the overlapping of several Arnold tongues and

ponenj for two distinct sections of the dynamical phase dia-internal costability regions for some periodic stationary states.

o1 w

/8 T
vio | o
o) 7 210
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which are written as a reducible fraction of the form
(mXP)/(mXQ), do not coincide with the winding num-
bers; they just indicate the costability mfattractors with the
same winding numbeP/Q.
In the present situatiofa,=0 and T>0), we have two
distinct Farey hierarchies. For smaller valuesagfthe gen-

larger values ofg the generating fractions are Ofvo cos-
table fixed pointsand 1/4(a four cyclg, as shown in Table
[ll. For intermediate values o&g these two distinct Farey

hierarchies coexist, as we can see in Figs. 10 and 11. Note

7351

FIG. 11. Magnifications of some costability

regions of the dynamical phase diagram for
as=0.1, ap=0, andT>0. The attractors are la-
beled by the corresponding Farey numbers. In the
darker shaded regions, some of them very slim,
there is a costability of periodic attractors with
the same winding numbers, but different struc-

tures.

IV. ANALYSIS OF THE MAPPING FOR ag=0
AND UNBIASED PATTERNS

The complexity of the dynamical phase diagrams is not a
particular property of the,=0 subspace. Even for an anti-
symmetric embedding matrifas=0) in the presence of an-

! : ' ~ tidiagonal elementgap #0), we obtain the same kind of ge-
erating numbers of the hierarchy are given by the fractiongeric behavior as shown in the Sec. Ill. Besides the trivial
0/4 (m:4, P/QZO/l, that iS, there are four costable fixed symmetry by inversion,)(’y)_)(_)(,_y)’ the mapp|ng is
pointg and 1/4(a four cyclg, as shown in Table Il. For

invariant by inversion of the coupling parametessandap

together with the coordinate transformations

and

the complex coexistence of two distinct Farey structures giv-
ing rise to the overlap of several Arnold tongues and the

internal costability regions for some periodic stationary

(x,y)—(y,x) if

(x,y)—=(y,—x) fif

aA—> - aA

aD—>_aD .

(34

(39

states. To allow a better appreciation of these details, w&he dynamical phase diagrams will be symmetric in the sub-
show some magnifications of the phase diagram in Fig. 11Space of parametees, X a, . Furthermore, due to the addi-
In the darker shaded regions, some of them very slim, theronal symmetry by temperature inversidn. —T, it is suf-

is a costability of periodic attractors with the same windingficient to consider the phase diagrams in the first octant of

numbers, but different structures. FBx0, the structures are the three-dimensional parameter spadgag .ap)-

generated by the Farey numbers 2/4 and & smaller
values ofag) and 1/2 and 1/4for larger values ofyg).

3.0 <
10k A \:j:x:: A g

a o S

D E e AB 7 F
—L0 G T o

/’//’ BD \\\\\\\\
=303 <io 00 1.0 2.0
as

FIG. 12. Ground state at temperatdre-0+ for ag=0 (the at-
tractors and the associated Farey numbers are given in Tahple 1V tained fora,=3/2 andap =0, given by Fig. 4.

In Fig. 12 we show the ground state fb=0+. As in Fig.

1, the indexed letters refer to attractors in the form

e 3{20
- i 2/14
7 \‘\1/8

FIG. 13. Dynamical phase diagram fag=3, ag=0, andT>0.
In the darker shaded regions there is a costability of periodic attrac-
tors with the same winding numbers, but different structures. Notice
the similarity of this figure with the dynamical phase diagram ob-
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TABLE 1V. Different regions in the ground state &=0+ for  the microscopic states. In the thermodynamic limit and away
as=0. from saturation, we obtain a set of nonlinear difference equa-
tions for the time evolution of the macroscopic order param-
and (02 eters. The attractors of these equations correspond to the sta-

- tionary solutions of the problem.
B = and (012 At h_igh temperatures, there_is only a trivi(aparamag_—
netic disordered stable fixed point. At lower levels of noise,

besides the orderederromagnetig fixed points, there is a

rich structure of locked region#rnold tongueginto differ-

ent cycles, with characteristic winding numbers, depending

on the parameters of the embedding matrix. We perform ana-

- Iytic calculations for the paramagnetic lines of continuous

_ _ + (1/4) transitions. The behavior of the largest Lyapunov exponent is

_ _ used to establish the transitions between the periodic struc-

+ _ tures. We give numerical evidence for the existence of dev-

T _ - _ iI's staircases, with a fractal character, in terms of the wind-

(1/6) ing numbers. Although there are also aperiodic limit cycles,
associated with a vanishing Lyapunov exponent, we have not

(1/e) been able to find chaotic attractors. For analogs of the
ANNNI model on a Cayley treg5] the appearance of chaotic

(1/6) attractors is related to costability regions between modulated
structures withdistinctwave numbers or between tlferro-

(1/6) magneti¢ uniform ordered and the modulated phases. Thus,

as Coolen and Sherringt¢@] have obtained a discontinuous

(1/8) transition between thauniform) Hopfield and the oscillating

- 0+ regions for a class of models wit=3, we believe that the

0 - - -0 absence of chaotic attractors is a particular feature of the

Hy = (118 p=2 case, where the dynamical transitions are always con-

tinuous.

We show that Farey numbers can be used to account for

X oy the appearance of the oscillating structures. In some regions
( * *>' of the dynamical phase diagrams, the coexistence of two
Yi¥Yq distinct Farey structures gives rise to the overlap of several

The different regions, together with the respective Farey\'nold tongues(corresponding to the costability of two dif-
numbers, are explicitly given in Table IV. In regions labeled ferent periodic stationary states, with the same winding num-

by two letters(AB,AC,BD,..), we have costability of two P€rs but different structurgs
different attractors. It should be emphasized that the complex structure of the

The linear analysis of stability of the disordered state carflyna@mical phase diagrams comes from the competition be-

be performed as in Sec. Ill. To obtain the continuous .‘para_tween symmetric and nonsymmetric contributions to the em-

magnetic” transitions, it is enough to replaeg by ap in beqqmg matrix. A_s we have aI_ready remarke_d, there is a
Egs.(29) and(30) for the critical temperature of the previous StiKing mathematical analogy with the phase diagram of the
case. The dynamical phase diagrams display the same NNNI model for helimagnetism(and, in particular, with
neric features. For example, in Fig. 13 we present the dySOMe analogs of the ANNNI model on a Cayley §6p. We
namical phase diagram fas=0 anda,=2 in the TXap hope to have provided some illustrations of the complex ef-
plane (which is very similar to the phase diagram in the fects of competing interactions. Also, we remark that our
Tx ag plane, fora,=2 andap=0, as shown in Fig. ¥ phase diagrams describe the behavior of two coupled neu-
s ' A2 b rons frequently considered in the literatyr,20. As an
V. CONCLUSIONS application of these investigations, some simple networks,
with just a few neuronal units, could certainly be built to take

We have performed detailed calculations to obtain the dypare of the generation of temporal sequer{&s

n_amical phase diagrams_ assc_;ciated with a qlass of_ very ACKNOWLEDGMENTS

simple neural networks including asymmetric interactions.

Although there is no detailed balance, we can write a master We acknowledge the financial support of the Brazilian
equation for the synchronous updating of the probabilities ohgencies CNPq and FAPESP.
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