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Dynamical phase diagrams of neural networks with asymmetric couplings

M. N. Tamashiro,* O. Kinouchi,† and S. R. Salinas‡

Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970, Sa˜o Paulo, São Paulo, Brazil
~Received 7 October 1996!

We consider the synchronous updating of a fully connected Ising neural network with separable but asym-
metric couplings. In the thermodynamic limit, and away from saturation, it is possible to write a nonlinear
mapping for the time evolution of the macroscopic order parameters. A detailed analysis of this mapping is
performed for a simple case, withp52 stored patterns. The dynamical phase diagram, in terms of the degree
of noise and the parameters of the embedding matrix, displays a rich structure of locked regions into different
cycles, in association with nonstandard Farey trees. In some regions of the dynamical phase diagram, we show
the coexistence of two different Farey sequences, giving rise to the overlapping of several locked regions.
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I. INTRODUCTION

The dynamical properties of fully connected Ising neu
networks, with separable but asymmetric couplings, h
been investigated in a set of papers by Coolen and
workers@1–4#. The states of the neurons are represented
Ising spin variables that evolve in time according to a s
chastic~Glauber! local-field alignment. The separability o
the interaction matrix leads to a convenient description
terms of macroscopic variables. Although there is no deta
balance, we can establish a set of~deterministic! equations
for the time evolution of the macroscopic order paramete
The attractors of these equations correspond to the statio
solutions of the problem.

In this paper, we look at the simplest, and nontrivi
cases that have not been fully analyzed by previous auth
We consider the synchronous~or parallel! updating of a net-
work with just p52 stored patterns, and a general 232 em-
bedding matrix, which leads to a two-dimensional nonline
mapping for the macroscopic order parameters. It is t
feasible to perform detailed calculations to characterize
global dynamical phase diagram of this toy model~in terms
of the temperature, which is associated with the level
noise of the system, and the strengths of the symmetric
nonsymmetric components of the embedding matrix!. At
high temperatures, there is only a trivial~paramagnetic! dis-
ordered stable fixed point. At lower levels of noise, there i
rich structure of locked regions~Arnold tongues! into differ-
ent cycles, depending on the parameters of the embed
matrix. We show that Farey numbers can be used to acc
for the appearance of these oscillating structures. Altho
there are also aperiodic limit cycles associated with a v
ishing Lyapunov exponent, we have not been able to fi
chaotic attractors.

The complex structure of the dynamical phase diagra
of these models comes from the competition between s
metric and nonsymmetric contributions to the embedd
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matrix. The mathematical analogy to the thermodynam
problem of an Ising model with competing ferromagne
and antiferromagnetic interactions between first and sec
neighbors along an axial direction~called the ANNNI model
@5#! is particularly striking. In the ANNNI model the locked
phases are associated with the spatial modulations of
equilibrium magnetization per site along a certain directio
In the neural network models, there is a periodic station
oscillation in time of the dynamical order parameter. So
analogs of the ANNNI model on a Cayley tree@6# can also
be formulated as a nonlinear dissipative mapping that le
to an equally rich and complex phase diagram.

It should be pointed out that asymmetric connection m
trices are always closer to biological realism. Also, simp
fixed points should not be the rule among the possible att
tors of a biologically more realistic dynamical model. Som
important phenomena, as the retrieval of temporal seque
and synchronization, can be related to the presence of as
metric interactions. In the recent literature there are sev
proposals to use the cyclic attractors of networks with asy
metric interactions to perform a number of computation
tasks @7#. Very simple networks, with just a few neuron
have actually been constructed and tested in the labora
@8#. We hope to provide some illustrations of the gene
behavior of these models.

This paper is organized as follows. In Sec. II we defi
the model and write the equations for the time evolution
the macroscopic order parameters. Sections III and IV
dedicated to the detailed analysis of special cases of
model. Some conclusions are presented in Sec. V.

II. DEFINITION OF THE MODEL

We consider a fully connected network ofN formal neu-
rons that can be represented by Ising spin variables,Si561,
for i51,...,N. As usual,Si511 indicates that neuroni is
firing action potentials at highest rate, andSi521 indicates a
state of rest. The spins are connected by a synaptic ma
$Ji j % defined by the separable bilinear Hebbian form,

Ji j5
1

N (
m,n51

p

j i
mAmnj j

n , ~1!
7344 © 1997 The American Physical Society
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55 7345DYNAMICAL PHASE DIAGRAMS OF NEURAL NETWORKS . . .
for iÞ j , andJii50, wherej i
m, which represents the activit

of neuron i in the stored patternm, for m51,...,p, is a
quenched random variable associated with the probab
distribution

P~j i
m!5 1

2 ~11rm!d~j i
m21!1 1

2 ~12rm!d~j i
m11!. ~2!

The parameterrm , such that21,rm,11, represents the av
erage activity per neuron in the stored patternm. For
Amn5dmn and unbiased patterns~rm50, ;m!, we regain the
Little-Hopfield model@9–11#, whose equilibrium properties
were investigated in the seminal work of Amit and collab
rators @12# ~including the case near saturation, forp5aN,
with finite a @13#!.

Although there are some investigations of this class
models with more general forms of the embedding ma
@1–3,14#, there is still room for further analysis. The simple
situation, which has not been fully investigated, refers to
attractor neural network with justp52 stored patterns. In
this case, the more general 232 embedding matrix can b
written in the form

A5S 11aD
aS2aA

aS1aA
12aD

D . ~3!

The diagonal case,Amn5dmn , that is, aS5aA5aD50, for
sequential~asynchronous! dynamics corresponds to a spi
glass model proposed by van Hemmen@15#. Coolen and
Sherrington@2# have already analyzed the particular case o
symmetric matrix,aA5aD50, and Laughton and Coolen@3#
have considered the antisymmetric case,aS5aD50, for par-
allel ~synchronous! dynamics. In the present paper, w
complement these previous studies and explore some
tures that cannot be observed without considering a gen
asymmetry.

To check that Eq.~3! is in fact the more general 232
matrix, let us write

Ã5S Ã11

Ã21

Ã12

Ã22
D 5

1

T
A5

1

T SA11

A21

A12

A22
D . ~4!

The ‘‘pseudotemperature’’T measures the stochasticity o
the system. It is related to the~Gaussian! fluctuations of the
local fields@9,16#, which may come from the random emi
sion of neurotransmitters and the delays on the synapses
may choose

1
2TrA5 1

2 ~A111A22!51, ~5!

that is,

1

T
5 1

2 TrÃ5 1
2 ~Ã111Ã22!. ~6!

We then see that the embedding matrix can be describe
terms of the symmetric (aS), antisymmetric (aA), and antidi-
agonal (aD) coupling parameters,

aS5
1
2 Tr~sxA!5 1

2 ~A121A21!5
Ã121Ã21

Ã111Ã22

, ~7!
ty

-

f
x

n

a

a-
ric

e

in

aA5
1

2i
Tr~syA!5 1

2 ~A122A21!5
Ã122Ã21

Ã111Ã22

, ~8!

aD5 1
2 Tr~szA!5 1

2 ~A112A22!5
Ã112Ã22

Ã111Ã22

, ~9!

wheresx , sy , andsz are the usual spin-12 Pauli matrices.
This parametrization in terms of these four independent
ments, (T,aS ,aA ,aD), is particularly suitable to exploit the
symmetries of the model for unbiased patterns~rm50, ;m!.

It should be noted that the diagonal Hebbian ter
Amn5dmn , gives origin to ordinary point attractors associat
with the four patterns,6j1 and6j2, corresponding to the
Mattis states@17#, whereas the remaining terms yield trans
tions between these patterns. The competition between t
conflicting effects leads to a rich dynamical phase diagram
terms of the temperatureT and the coupling parameter
(aS ,aA ,aD).

As pointed out in the Introduction, due to the lack
detailed balance, we cannot use the techniques of equ
rium statistical mechanics to analyze models with asymm
ric interactions. However, it is still possible to present a d
namical description of the macroscopic behavior. F
synchronous updating, we can write the Markov mas
equation

rn11~S!5(
S8

w~S8→S!rn~S8!, ~10!

wherern~S! is the probability of finding the network in the
microscopic stateS5~S1 ,...,SN! at discrete time stepn, and
the transition probability is given by a product of Glaub
terms@16#,

w~S8→S!5)
j51

N
1
2 $11tanh@Sjhj~S8!/T#%, ~11!

under the stochastic field

hj~S!5 (
k51

N

JjkSk . ~12!

The dynamic macroscopic order parameters are given
the thermal averages of the overlaps between the mi
scopic states of the network and the stored patterns,

mm~n!5(
S

rn~S!
1

N (
i51

N

j i
mSi , ~13!

for m51,...,p. If mm51, themth stored pattern is perfectly
retrieved; ifmm50, there is no correlation between the ne
work state and themth stored pattern. The antipattern2jm is
perfectly retrieved whenmm521. From the master equation
it is easy to show that
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mm~n11!5mm~n!2
2

N (
i51

N

j i
m(

S
Sirn~S!

3 (
S8ÞS

w~S→S8!dS
i82Si

. ~14!

For a fully connected network withp52, as in the toy mode
under consideration, the mean-field approximation beco
exact. In the thermodynamic limit,N→`, we can then use
the properties of self-averaging with respect to the mic
scopic realizations of the stored patterns to reduce the
namic process to a one-site problem. The temporal evolu
of the dynamical order parameters is finally written as a
of difference equations,

mg~n11!5K j i
g tanhF 1T (

m,n51

p

j i
mAmnmn~n!G L

j

, ~15!

where the angular brackets denote an average with respe
the probability distribution~2! of the stored patterns.

For the toy model~p52!, Eq. ~15! can be written in the
explicit form

Sm1~n11!

m2~n11! D5
11r 1r 2

2 S 11D tanhH 1T @~11aS2aA1aD!

3m1~n!1~11aS1aA2aD!m2~n!#J
1
12r 1r 2

2 S 1
21D tanhH 1T @~12aS1aA

1aD!m1~n!2~12aS2aA2aD!m2~n!#J .
~16!

Although starting from more realistic learning rules, it
remarkable that Peretto@18# has obtained an analogous set
~differential! equations for the asynchronous updating of u
biased patterns.

Introducing the variables

xn5
1

11r 1r 2
@m1~n!1m2~n!#, ~17!

and

yn5
1

12r 1r 2
@m1~n!2m2~n!#, ~18!

FIG. 1. Ground state at temperatureT501 for aD50 ~the at-
tractors and the associated Farey numbers are given in Table!.
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TABLE I. Different regions in the ground state atT501 for
aD50.

A 5
1

and
2

~0/2!
1 2

B 5
1

and
2

~0/2!
2 1

C 5
1 1

and
2 2

~2/4!
1 2 1 2

D 5
1 2

and
1 2

~2/4!
1 1 2 2

E 5
1 1 2 2

~1/4!
1 2 2 1

F 5
1 1 2 2

~1/4!
2 1 1 2

G1 5
2 0 1 0

~1/4!
1 1 2 2

G2 5
1 0 2 0

~1/4!
1 1 2 2

G3 5
1 1 2 2

~1/4!
1 0 2 0

G4 5
1 1 2 2

~1/4!
2 0 1 0

H1 5
2 0 1 1 0 2

~1/6!
1 1 1 2 2 2

H2 5
1 0 2 2 0 1

~1/6!
1 1 1 2 2 2

H3 5
1 1 1 2 2 2

~1/6!
1 0 2 2 0 1

H4 5
1 1 1 2 2 2

~1/6!
2 0 1 1 0 2

I 1 5
1 1

and
2 2

~2/4!
2 0 1 0

I 2 5
1 1

and
2 2

~2/4!
1 0 2 0

I 3 5
1 0

and
2 0

~2/4!
1 1 2 2

I 4 5
2 0

and
1 0

~2/4!
1 1 2 2

J1 5
1 1 0 2 2 0

~1/6!
0 2 2 0 1 1

J2 5
1 1 0 2 2 0

~1/6!
0 1 1 0 2 2

J3 5
0 1 1 0 2 2

~1/6!
1 1 0 2 2 0

J4 5
0 2 2 0 1 1

~1/6!
1 1 0 2 2 0

K1 5
1 1 1 0 2 2 2 0

~1/8!
1 0 2 2 2 0 1 1

K2 5
1 1 1 0 2 2 2 0

~1/8!
2 0 1 1 1 0 2 2

L1 5
1

and
2

~0/2!
0 0

L2 5
0

and
0

~0/2!
1 2
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FIG. 2. Dynamical phase diagrams foraD50,
T.0, and some typical values of the paramete
aS andaA . Only the widest mode-locked region
are displayed. The various attractors are labe
by the corresponding Farey numbers.
p-

nce
we can also write

xn115tanhH 1T @~11r 1r 2!~11aS!xn

1~12r 1r 2!~aD2aA!yn#J ,
yn115tanhH 1T @~11r 1r 2!~aD1aA!xn

1~12r 1r 2!~12aS!yn#J , ~19!

which can be symbolically represented as

xn115F~xn!, ~20!
u

re

-

wherexn5(xn ,yn).
To analyze the linear stability of the attractors of the ma

ping, we define the Lyapunov exponents$lm%, which mea-
sure the mean exponential rate of convergence or diverge
of trajectories surrounding the attractor,

lm5 lim
M→`

1

M
lnuLmu ~m51,2!, ~21!

where$Lm% are the eigenvalues of the product matrix

J~xM !J~xM21!•••J~x2!J~x1!, ~22!

formed by the product of the Jacobian matrices
J~xn!5
]~xn11 ,yn11!

]~xn ,yn!
5S ]xn11

]xn
]yn11

]xn

]xn11

]yn
]yn11

]yn

D 5
1

T S ~11r 1r 2!~11aS!~12xn11
2 !

~11r 1r 2!~aD1aA!~12yn11
2 !

~12r 1r 2!~aD2aA!~12xn11
2 !

~12r 1r 2!~12aS!~12yn11
2 ! D ,

~23!
he
computed along the attractor.
As the hyperbolic tangent is an odd function of its arg

ment, the analysis of the mapping forT.0 can be easily
extended toT,0. The attractors of these two cases are
lated by the following transformations:~i! if x* is a stable
fixed point of the mapping forT.0, we have a stable two
cycle given by $x* ,2x* % for T,0; ~ii ! if
$x1* ,x2* ,xQ21* ,xQ* % is a periodic cycle of periodQ ~odd! for
T.0, we have a periodic cycle of period 2Q for T,0, de-
-

-

fined by $x1* ,2x2* ,...,(21)k11xk* ,...,xQ* ,2x1* ,x2* ,...,
(21)kxk* ,...,2xQ* %, where kP$1,...,Q%; ~iii ! if
$x1* ,x2* ,...,xQ21* ,xQ* % is a periodic cycle of periodQ ~even!
for T.0, we have a periodic cycle of periodQ for T,0,
defined by $x1* ,2x2* ,...,(21)k11xk* ,...,2xQ* %, where
kP$1,...,Q%.

We remark that Eq.~19! corresponds to a subspace of t
more general class of mappings,
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FIG. 3. Dynamical phase diagram foraS5aD50 andT.0. The
more important tongues are labeled by the corresponding F
numbers. The Farey numbers of theT,0 dynamical phase diagram
are obtained by the generating numbers 2/4 and 1/4.

FIG. 4. Dynamical phase diagram foraA5
3
2, aD50, andT.0.

In the darker shaded regions there is a costability of periodic att
tors with the same winding numbers, but different structures~see
the magnifications in Fig. 5!.

FIG. 5. Magnifications of some costability regions of the d
namical phase diagram foraA5

3
2, aD50, andT.0. The attractors

are labeled by the corresponding Farey numbers. In the da
shaded regions there is a costability of periodic attractors with
same winding numbers, but different structures.
Xn115g~w11Xn1w12Yn1uX!,

Yn115g~w21Xn1w22Yn1uY!, ~24!

with

g~h!5c11c2 tanh~gh!, ~25!

which describe two coupled sigmoidal neurons with se
couplings ~w11 and w22! and threshold terms~uX and uY!.
The casec15c25g5 1

2 , that is, g(h)5(11e2h)21, has
been considered by Pasemann and Nelle@19#. In this particu-
lar case, with a suitable change of variables,xn52Xn21, and
with the redefinitions

1

T
~11aS!5 1

4w11,

1

T
~aD2aA!5 1

4w12,

1

T
Hx5

1
2 ~uX1 1

2w111
1
2w12!,

ey

c-

er
e

FIG. 6. Devil’s staircase~v/2p versusaA! associated with the
winding numbers of the Arnold tongues and the corresponding la
est Lyapunov exponent~l1 versusaA! for aS5aD50 andT50.15.
The devil’s staircase forT520.15 is obtained by reflection aroun
v/2p51/4.

FIG. 7. Devil’s staircase~v/2p versusaS! associated with the
winding numbers of the Arnold tongues and the corresponding la
est Lyapunov exponent~l1 versus aS! for aA5

3
2, aD50, and

T50.31. The devil’s staircase forT520.31 is obtained by reflec-
tion aroundv/2p51/4.
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1

T
~12aS!5 1

4w22,

1

T
~aD1aA!5 1

4w21,

1

T
Hy5

1
2 ~uY1 1

2w221
1
2w21!,

the mapping~24! can be written as in Eq.~19! for unbiased
patterns with the inclusion of the additional thresholdsHx
and Hy . For this model, Stollenwerk and Pasemann@20#
have detected the existence of strange attractors in a re
of the dynamical phase diagram near the parametersT5
2 2

5, as51, aA53
5, aD50, Hx5

9
5, andHy50.

III. ANALYSIS OF THE MAPPING FOR aD50
AND UNBIASED PATTERNS

In the absence of antidiagonal couplings~aD50! and for
unbiased patterns (r 15r 250), besides the trivial symmetr
by inversion, (x,y)→(2x,2y), the mapping is also invari
ant by inversion of the coupling parametersaS and aA to-
gether with the coordinate transformations

~x,y!→~y,2x! if aS→2aS ~26!

FIG. 8. Largest Lyapunov exponent~l1 versusaS! for aA5
3
2,

aD50, andT50.31. These graphs represent several magnificat
of the lower portion of Fig. 7 to allow a better view of the presum
fractal structure. The magnified regions are bounded by rectan
ion

and

~x,y!→~x,2y! if aA→2aA . ~27!

The dynamical phase diagrams will be symmetric in t
aS3aA subspace of parameters. Furthermore, due to the
ditional symmetry by temperature inversion,T→2T, it is
sufficient to obtain the phase diagram in the first octant of
three-dimensional parameter space, (T,aS ,aA).

In Fig. 1, we show the ground state~at T→01!. The
indexed letters in this phase diagram refer to attractors
resented in the form

S x1* •••xQ*

y1* •••yQ*
D .

The different regions, together with the respective Fa
numbers, are explicitly given in Table I. To make conta
with the analysis of Coolen and Sherrington@2#, we identify
the simplest states:~i! A andB are Mattis regions~patterns
1 and 2, respectively!; ~ii ! L1 andL2 are points of spurious o
mixture states;~iii ! regionsC and D are associated with
cyclic structures. In regionAB ~which we call Hopfield re-
gion!, there is a costability of statesA andB. Mixed states
occur foraA50 only ~due to the uncoupling of the mappin
in this particular case!.

The usual methods of the theory of bifurcations@21# can
be used to obtain the dynamical phase diagrams for non

s

s.

FIG. 9. Largest Lyapunov exponent~l1 versusaS! for aA5
3
2,

aD50, andT50.31. These graphs represent several magnificat
of the lower portion of Fig. 7 to allow a better view of the presum
fractal structure. The magnified regions are bounded by rectan
TABLE II. Farey hierarchy for smaller values ofaS .

n50 → 0
4

1
4

n51 → 1
8

n52 → 1
12

2
12

n53 → 1
16

2
20

3
20

3
16

n54 → 1
20

2
28

3
32

3
28

4
28

5
32

5
28

4
20
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TABLE III. Farey hierarchy for larger values ofaS .

n50 → 0
2

1
4

n51 → 1
6

n52 → 1
8

2
10

n53 → 1
10

2
14

3
16

3
14

n54 → 1
12

2
18

3
22

3
20

4
22

5
26

5
24

4
18
-
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ishing temperatures. At the trivial~paramagnetic! disordered
fixed point,x*5(x* ,y* )5~0,0!, the eigenvalues of the Jaco
bian matrix can be written in closed form,

L1,25
1

T
6
1

T
AaS22aA

2. ~28!

We should consider two cases.
~i! For uaSu.uaAu, these eigenvalues are real. The syst

may undergo either a supercritical pitchfork bifurcation~for
T.0! or a period-doubling~or flip! bifurcation~for T,0! at
the critical temperature

uTcu511AaS22aA
2. ~29!

The continuous transitions are between the disordered~para-
magnetic! state and either the Mattis~ferromagnetic! states,
for T.0, or a cyclic~antiferromagnetic! state, forT,0. The
disordered state is characterized by the Farey number
whereas the ordered states are associated with the F
numbers 0/2, forT.0, or 1/2, forT,0, respectively.

~ii ! For uaSu,uaAu, the eigenvalues are complex conj
gates. The system undergoes a Hopf supercritical bifurca
at the critical temperature

uTcu5A11aA
22aS

2, ~30!

associated with a continuous transition between the di
dered state and a periodic cycle with a critical winding nu
bervc ~0<vc<p/2, for Tc.0; p/2<vc<p, for Tc,0! that
satisfies the relations

cosvc5
1

Tc
~31!

and

tanvc5@aA
22aS

2#1/2. ~32!

From Eqs.~29! and~30!, we obtain the stability borders o
the trivial disordered state. The stability borders of the pe
odic cycles and of the attractive fixed points, correspond
to the Mattis states, are determined from the largest ass
ated Lyapunov exponents~see the phase diagrams in Fig
2–5; note that we are indicating the main periodic regio
only!.

The two-dimensional nonlinear mapping given by E
~20! presents synchronization~phase-locking! associated
with Arnold tongues. There are finite regions of the dynam
cal phase diagram where the period of a given cycle rem
locked, giving rise to a devil’s staircase structure in terms
the winding number. Figures 6 and 7 display this dev
staircase structure~with the associated largest Lyapunov e
ponent! for two distinct sections of the dynamical phase d
/1,
rey

n

r-
-

i-
g
ci-
.
s

.

-
ns
f

-

gram. As in the case of the analogs of the ANNNI model
a Cayley tree, the devil’s staircases are expected to displ
fractal nature. It is peculiar to see that the Lyapunov ex
nents themselves seem to exhibit this same kind of fra
behavior. In Figs. 8 and 9 we illustrate the presumed fra
character of the largest Lyapunov exponent.

The winding number associated with an Arnold tong
can be written as a rationalv/2p5P/Q, whereP andQ are
relative prime integers~Q is the period of the cycle andP is
the number of minima within that period;v represents an
‘‘average’’ angular frequency!. The structure of the Arnold
tongues in the dynamical phase diagram is described b
Farey hierarchy @22#. In a standardFarey hierarchy, the
Farey number coincides with the winding number. Given
two widest Arnold tongues labeled by the Farey numb
P1/Q1 andP2/Q2 , the next Farey number~which labels the
next widest Arnold tongue!, is obtained by the composition
rule

P

Q
5

P11P2

Q11Q2
. ~33!

This procedure creates a hierarchical tree, whose elem
are obtained from the ratio between the sums of the num
tors and the denominators of the preceding Farey numb
The horizontal ordering of the Farey numbers gives the re
tive position of the Arnold tongues in the dynamical pha
diagram, whereas the vertical ordering, hierarchically str
tured, yields a qualitative indication of the region occupi
by the various Arnold tongues. Arnold tongues identified
Farey numbers at the top are wider than tongues identified
numbers at the bottom of the hierarchy.

In standard Farey hierarchies, the generating fractio
P1/Q1 andP2/Q2 produce Farey numbers such thatP andQ
are always relative primes~that is, the winding and the Fare
numbers coincide!. In nonstandardFarey hierarchies@23#,
however,P andQ may have some common factor~asm3P
andm3Q!. In this nonstandard case, the Farey numbe

FIG. 10. Dynamical phase diagram foraS50.1, aD50, and
T.0. Notice the complex coexistence of two distinct Farey str
tures, giving rise to the overlapping of several Arnold tongues a
internal costability regions for some periodic stationary states.
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FIG. 11. Magnifications of some costabilit
regions of the dynamical phase diagram f
aS50.1, aD50, andT.0. The attractors are la
beled by the corresponding Farey numbers. In
darker shaded regions, some of them very sli
there is a costability of periodic attractors wit
the same winding numbers, but different stru
tures.
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which are written as a reducible fraction of the for
(m3P)/(m3Q), do not coincide with the winding num
bers; they just indicate the costability ofm attractors with the
same winding numberP/Q.

In the present situation~aD50 andT.0!, we have two
distinct Farey hierarchies. For smaller values ofaS the gen-
erating numbers of the hierarchy are given by the fracti
0/4 ~m54, P/Q50/1, that is, there are four costable fixe
points! and 1/4 ~a four cycle!, as shown in Table II. For
larger values ofaS the generating fractions are 0/2~two cos-
table fixed points! and 1/4~a four cycle!, as shown in Table
III. For intermediate values ofaS these two distinct Farey
hierarchies coexist, as we can see in Figs. 10 and 11. N
the complex coexistence of two distinct Farey structures g
ing rise to the overlap of several Arnold tongues and
internal costability regions for some periodic stationa
states. To allow a better appreciation of these details,
show some magnifications of the phase diagram in Fig.
In the darker shaded regions, some of them very slim, th
is a costability of periodic attractors with the same windi
numbers, but different structures. ForT,0, the structures are
generated by the Farey numbers 2/4 and 1/4~for smaller
values ofaS! and 1/2 and 1/4~for larger values ofaS!.

FIG. 12. Ground state at temperatureT501 for aS50 ~the at-
tractors and the associated Farey numbers are given in Table!.
s

te
-
e

e
1.
re

IV. ANALYSIS OF THE MAPPING FOR aS50
AND UNBIASED PATTERNS

The complexity of the dynamical phase diagrams is no
particular property of theaD50 subspace. Even for an ant
symmetric embedding matrix~aS50! in the presence of an
tidiagonal elements~aDÞ0!, we obtain the same kind of ge
neric behavior as shown in the Sec. III. Besides the triv
symmetry by inversion, (x,y)→(2x,2y), the mapping is
invariant by inversion of the coupling parametersaA andaD
together with the coordinate transformations

~x,y!→~y,x! if aA→2aA ~34!

and

~x,y!→~y,2x! if aD→2aD . ~35!

The dynamical phase diagrams will be symmetric in the s
space of parametersaA3aD . Furthermore, due to the add
tional symmetry by temperature inversion,T→2T, it is suf-
ficient to consider the phase diagrams in the first octan
the three-dimensional parameter space, (T,aA ,aD).

In Fig. 12 we show the ground state forT501. As in Fig.
1, the indexed letters refer to attractors in the form

FIG. 13. Dynamical phase diagram foraA5
3
2, aS50, andT.0.

In the darker shaded regions there is a costability of periodic att
tors with the same winding numbers, but different structures. No
the similarity of this figure with the dynamical phase diagram o
tained foraA53/2 andaD50, given by Fig. 4.
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S x1* •••xQ*

y1* •••yQ*
D .

The different regions, together with the respective Fa
numbers, are explicitly given in Table IV. In regions label
by two letters~AB,AC,BD,...!, we have costability of two
different attractors.

The linear analysis of stability of the disordered state c
be performed as in Sec. III. To obtain the continuous ‘‘pa
magnetic’’ transitions, it is enough to replaceaS by aD in
Eqs.~29! and~30! for the critical temperature of the previou
case. The dynamical phase diagrams display the same
neric features. For example, in Fig. 13 we present the
namical phase diagram foraS50 andaA53

2 in the T3aD
plane ~which is very similar to the phase diagram in th
T3aS plane, foraA53

2 andaD50, as shown in Fig. 4!.

V. CONCLUSIONS

We have performed detailed calculations to obtain the
namical phase diagrams associated with a class of
simple neural networks including asymmetric interactio
Although there is no detailed balance, we can write a ma
equation for the synchronous updating of the probabilities

TABLE IV. Different regions in the ground state atT501 for
aS50.

A 5
1

and
2

~0/2!
1 2

B 5
1

and
2

~0/2!
2 1

C 5
1 2

~1/2!
2 1

D 5
1 2

~1/2!
1 2

E 5
1 1 2 2

~1/4!
1 2 2 1

F 5
1 1 2 2

~1/4!
2 1 1 2

G1 5
1 1 1 2 2 2

~1/6!
1 0 2 2 0 1

G2 5
1 0 2 2 0 1

~1/6!
1 1 1 2 2 2

G3 5
2 0 1 1 0 2

~1/6!
1 1 1 2 2 2

G4 5
1 1 1 2 2 2

~1/6!
2 0 1 1 0 2

H1 5
1 1 1 0 2 2 2 0

~1/8!
1 0 2 2 2 0 1 1

H2 5
1 1 1 0 2 2 2 0

~1/8!
2 0 1 1 1 0 2 2
y

n
-

ge-
y-

-
ry
.
er
f

the microscopic states. In the thermodynamic limit and aw
from saturation, we obtain a set of nonlinear difference eq
tions for the time evolution of the macroscopic order para
eters. The attractors of these equations correspond to the
tionary solutions of the problem.

At high temperatures, there is only a trivial~paramag-
netic! disordered stable fixed point. At lower levels of nois
besides the ordered~ferromagnetic! fixed points, there is a
rich structure of locked regions~Arnold tongues! into differ-
ent cycles, with characteristic winding numbers, depend
on the parameters of the embedding matrix. We perform a
lytic calculations for the paramagnetic lines of continuo
transitions. The behavior of the largest Lyapunov exponen
used to establish the transitions between the periodic st
tures. We give numerical evidence for the existence of d
il’s staircases, with a fractal character, in terms of the win
ing numbers. Although there are also aperiodic limit cycl
associated with a vanishing Lyapunov exponent, we have
been able to find chaotic attractors. For analogs of
ANNNI model on a Cayley tree@6# the appearance of chaoti
attractors is related to costability regions between modula
structures withdistinctwave numbers or between the~ferro-
magnetic! uniform ordered and the modulated phases. Th
as Coolen and Sherrington@2# have obtained a discontinuou
transition between the~uniform! Hopfield and the oscillating
regions for a class of models withp>3, we believe that the
absence of chaotic attractors is a particular feature of
p52 case, where the dynamical transitions are always c
tinuous.

We show that Farey numbers can be used to accoun
the appearance of the oscillating structures. In some reg
of the dynamical phase diagrams, the coexistence of
distinct Farey structures gives rise to the overlap of sev
Arnold tongues~corresponding to the costability of two dif
ferent periodic stationary states, with the same winding nu
bers but different structures!.

It should be emphasized that the complex structure of
dynamical phase diagrams comes from the competition
tween symmetric and nonsymmetric contributions to the e
bedding matrix. As we have already remarked, there i
striking mathematical analogy with the phase diagram of
ANNNI model for helimagnetism~and, in particular, with
some analogs of the ANNNI model on a Cayley tree@6#!. We
hope to have provided some illustrations of the complex
fects of competing interactions. Also, we remark that o
phase diagrams describe the behavior of two coupled n
rons frequently considered in the literature@19,20#. As an
application of these investigations, some simple netwo
with just a few neuronal units, could certainly be built to ta
care of the generation of temporal sequences@8#.
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